some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

نویسندگان

m. ashraf

department of mathematics,‎ ‎aligarh muslim university‎, ‎aligarh‎, ‎202002, india. n. parveen

department of mathematics,‎ ‎aligarh muslim university‎, ‎aligarh‎, ‎202002, ‎india.

چکیده

‎let $r$ be a $*$-prime ring with center‎ ‎$z(r)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $r$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $r$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎suppose that $u$ is an ideal of $r$ such that $u^*=u$‎, ‎and $c_{sigma,tau}={cin‎ ‎r~|~csigma(x)=tau(x)c~mbox{for~all}~xin r}.$ in the present paper‎, ‎it is shown that if characteristic of $r$ is different from two and‎ ‎$[d(u),d(u)]_{sigma,tau}={0},$ then $r$ is commutative‎. ‎commutativity of $r$ has also been established in case if‎ ‎$[d(r),d(r)]_{sigma,tau}subseteq c_{sigma,tau}.$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎Let $R$ be a $*$-prime ring with center‎ ‎$Z(R)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $R$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎Suppose that $U$ is an ideal of $R$ such that $U^*=U$‎, ‎and $C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper‎, ‎it is shown that if charac...

متن کامل

Commutativity of Prime Γ-near Rings with Γ− (σ, Τ)-derivation

Let N be a prime Γ-near ring with multiplicative center Z. Let σ and τ be automorphisms of N and δ be a Γ− (σ, τ)-derivation of N such that N is 2-torsion free. In this paper the following results are proved: (1) If σγδ = δγσ and τγδ = δγτ and δ(N) ⊆ Z, or [δ(x), δ(y)]γ = 0, for all x, y ∈ N and γ ∈ Γ, then N is a commutative ring. (2) If δ1 is a Γ-derivation, δ2 is a Γ − (σ, τ) derivation of N...

متن کامل

On derivations and commutativity in prime rings

Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a nonzero right ideal of R such that [[d(x), x], [d(y), y]] = 0, for all x, y ∈ I. We prove that if [I, I]I ≠ 0, then d(I)I = 0. 1. Introduction. Let R be a prime ring and d a nonzero derivation of R. Define [x, y] 1 = [x, y] = xy − yx, then an Engel condition is a polynomial [x, y] k = [[x, y] k−1 ,y]

متن کامل

On Prime Near-Rings with Generalized Derivation

LetN be a zero-symmetric left near-ring, not necessarily with amultiplicative identity element; and letZ be its multiplicative center. DefineN to be 3-prime if for all a, b ∈ N\{0}, aNb / {0}; and callN 2-torsion-free if N, has no elements of order 2. A derivation onN is an additive endomorphism D of N such that D xy xD y D x y for all x, y ∈ N. A generalized derivation f with associated deriva...

متن کامل

On Generalized Derivations and Commutativity of Prime Rings with Involution

Let R be a ring with involution ′∗′. A map δ of the ring R into itself is called a derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. An additive map F : R → R is called a generalized derivation on R if F(xy) = F(x)y + xδ(y) for all x, y ∈ R, Permanent address: Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh202002, India 292 Shakir Ali and Husain Alhazmi whe...

متن کامل

A COMMUTATIVITY CONDITION FOR RINGS

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۴۲، شماره ۵، صفحات ۱۱۹۷-۱۲۰۶

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023